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Abstract 21 

 Stormwater infrastructure can mitigate precipitation-driven flooding when there are no 22 

obstructions to draining. Coastal areas increasingly experience recurrent flooding due to elevated 23 

water levels from storms or tides, but the inundation of coastal stormwater infrastructure by 24 

elevated water levels has not been broadly assessed. We conservatively estimated stormwater 25 

infrastructure inundation in municipalities along the Atlantic United States coast by using areas 26 

of high tide flooding (HTF) on roads as a proxy. We also modeled stormwater infrastructure 27 

inundation in four North Carolina municipalities and measured infrastructure inundation in one. 28 

Over 600 east coast municipalities had road area impacted by HTF, and over 1/3rd had >1% road 29 

area impacted. Modeling results and water level measurements indicated that extensive 30 

inundation of underground stormwater infrastructure frequently occurs during typical water 31 

levels. These results suggest that stormwater infrastructure inundation is common and increases 32 

the occurrence of urban flooding along the east coast of the US. 33 

 34 

1 Introduction 35 

 Coastal flooding is a longstanding issue which has been exacerbated by climate change 36 

(Kulp & Strauss, 2019; Nicholls et al., 1999; Wahl et al., 2015; Woodruff et al., 2013). Flooding 37 

due to extreme storm events such as hurricanes is increasing, and these extreme storms can cause 38 

massive amounts of damage to coastal communities (Hallegatte et al., 2013; Hinkel et al., 2014). 39 

While sea level rise is predicted to increase the impact of extreme storm events on coastal areas, 40 

it is also increasing the incidence of recurrent nuisance flooding known as “high tide flooding” 41 

(HTF) (Sweet et al., 2020, 2018). Many cities in the United States (US) already experience 42 

multiple days of HTF a year, with the number of flood days rapidly increasing (Sweet et al., 43 
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2018). During dry weather, this recurrent nuisance flooding can be disruptive to local 44 

infrastructure and economies (Hino et al., 2019; Jacobs et al., 2018). Combined with typical 45 

storm conditions, high tide flooding can impede stormwater drainage and result in more 46 

significant compound flooding (Rosenzweig et al., 2018; Shen et al., 2019; Wahl et al., 2015; 47 

R.L Wilby, 2007). 48 

 Stormwater drainage networks aim to prevent flooding from stormwater runoff, but sea 49 

level rise threatens to reduce the efficacy of coastal stormwater networks (Rosenzweig et al., 50 

2018; Titus et al., 1987; R.L Wilby, 2007). The goal of reducing precipitation-driven flooding 51 

has conventionally been achieved using an underground pipe network that quickly conveys 52 

stormwater runoff to a receiving waterbody using gravity (Burns et al., 2012; Hale, 2016). Older 53 

stormwater networks were designed to accommodate conditions at the time of their construction 54 

under the assumption that future conditions and variability will be similar to those in the past, but 55 

climate change has invalidated this assumption (Milly et al., 2008). Relative sea level rise in 56 

some coastal areas of the US has increased mean sea level by up to a foot since the 1960s 57 

(Eggleston & Pope, 2013; Zervas, 2009), so many coastal stormwater networks are increasingly 58 

inundated by typical high tide water levels or rising groundwater levels (Rotzoll & Fletcher, 59 

2013; Sadler et al., 2020; Shen et al., 2019; Su et al., 2020; Wdowinski et al., 2016). Stormwater 60 

network inundation reduces how well the system drains during storm events (Shen et al., 2019; 61 

Wahl et al., 2015), but recurrent stormwater network inundation by saltwater also corrodes 62 

stormwater infrastructure (Bjerklie et al., 2012), promotes saltwater intrusion to groundwater (Su 63 

et al., 2020), and can mobilize fecal bacteria from co-located sanitary sewer lines (Su et al., 64 

2020). 65 



manuscript submitted to Earth’s Future 

 

 Inundation of underground stormwater networks has been reported in multiple cities in 66 

the US (Hino et al., 2019; Sadler et al., 2020; Shen et al., 2019; Wdowinski et al., 2016), but a 67 

broad characterization of stormwater network inundation has not been conducted. Recent studies 68 

of compound flooding show how both stormwater network inundation and precipitation 69 

influence coastal flooding, but most of these studies focus on small areas or specific extreme 70 

storm events to recreate real-world flooding conditions using hydrodynamic models (Gallien et 71 

al., 2014; Hasan Tanim & Goharian, 2020; Sadler et al., 2020; Shen et al., 2019). These flooding 72 

estimates are extremely useful for the modeled study areas, but the limited spatial or temporal 73 

resolution of flooding estimates may limit their utility to identify vulnerable infrastructure 74 

hotspots at larger spatial scales or during dry-weather conditions. Regional- or national-scale 75 

estimates of stormwater network inundation do not exist, but these estimates, or even proxies, of 76 

stormwater network inundation would be helpful in characterizing the extent and scale of the 77 

issue. For broad estimates of stormwater network inundation to identify vulnerable infrastructure 78 

during dry- or wet-weather conditions, static inundation (“bathtub”) models that use a digital 79 

elevation model (DEM) to estimate inundation at discrete water levels may serve as useful tools 80 

for managers. Static inundation models have limitations, such as over-estimating flooding extent 81 

relative to hydrodynamic models (Castrucci & Tahvildari, 2018; Gallien et al., 2014), but their 82 

simplicity makes them well-suited for use as a diagnostic tool at large spatial scales. 83 

 In this study, we used simple proxies, static inundation models, and water level 84 

measurements to estimate stormwater network inundation at varying spatial scales. Through 85 

modeling, we also tested how stormwater networks influence flooding when receiving waters are 86 

elevated and how stormwater network inundation relates to current NOAA coastal flood 87 

thresholds. To identify locations along the eastern US coast where stormwater network 88 
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inundation may occur, we used buffered road data from the OpenStreetMap and NOAA high tide 89 

flooding estimates to find roads within incorporated municipalities that experience HTF, and 90 

thus likely also have subterranean inundation of the stormwater network draining the road. To 91 

characterize inundation of the stormwater network in the coastal town of Beaufort, NC, we 92 

measured water levels in stormwater infrastructure over a period of 8 months and compared them 93 

to water levels from a nearby NOAA tide gauge (Figure S1). We then used a static inundation 94 

model both with and without a coupled pipe network model to estimate stormwater network 95 

inundation and overland flooding across a range of water levels in Beaufort and three other cities 96 

in NC (Wilmington, Nags Head, and New Bern)(Figure S1). 97 

 98 

2 Materials and Methods 99 

2.1 High tide flooding on roads along the US east coast  100 

 We used publicly available national-scale road and high tide flooding datasets to find 101 

areas where the two datasets overlapped in incorporated municipalities along the east coast of the 102 

US. We suggest that areas where roads are inundated during high tide flooding can act as a 103 

conservative proxy for areas where stormwater network inundation occurs during high tide 104 

events. This estimate can be considered conservative because without stormwater network 105 

infrastructure data, we cannot estimate the extent of inundation in pipes that are underground. 106 

Therefore, the only way to estimate the incidence of underground stormwater network 107 

inundation at a national or regional scale is to detect the end results of stormwater network 108 

inundation, which is overland flooding caused by surcharge from the stormwater network or 109 

overland flooding that is actively entering the stormwater network. This assumption would likely 110 
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not apply in lower-density or rural areas if there is no stormwater network present, but we 111 

believe that this assumption is reasonable within the boundaries of incorporated municipalities. 112 

 The east coast of the US is comprised of fifteen states, ranging from the Atlantic coast of 113 

Florida to Maine, and these fifteen states were selected as the extent for the stormwater network 114 

inundation estimate. Census bureau incorporated municipality boundaries were downloaded for 115 

each state in order to constrain the estimate to urban areas, where the underlying assumption of 116 

the coincidence of roads and stormwater networks is likely strongest. High tide flooding 117 

estimates from NOAA were downloaded for each state (Sweet et al., 2020), and these estimates 118 

consist of approximately 3-meter resolution raster data sets that indicate areas where “minor 119 

flooding” occurs based on a common impact threshold derived from the local tidal range (Minor 120 

flood threshold (m) = 1.04 * (Mean Higher High Water – Mean Lower Low Water) + 0.5) 121 

(Sweet et al., 2018). Road data for each state were downloaded from the open-source 122 

OpenStreetMap (https://www.openstreetmap.org). The OpenStreetMap road dataset was selected 123 

rather than the Census Bureau’s TIGER dataset because the OpenStreetMap dataset explicitly 124 

identifies bridges and tunnels. Bridges and tunnels were removed from the roads dataset because 125 

including bridges and tunnels could create false positives for the inundation estimates, where the 126 

bridge or tunnel appears to overlap high tide flooding extent when it is actually over (bridges) or 127 

under (tunnels) the inundated area; most bridges are removed from the DEMs used to calculate 128 

high tide flooding estimates.  129 

 Processed road data consisted of GIS polylines, and a 5-meter buffer was created around 130 

all polylines to create polygons that approximated road surfaces (i.e., 10 meter width). 131 

Waterbody outlines from the National Hydrography Dataset (NHD) (i.e., ocean/sea, rivers, 132 

ponds, reservoirs) were used to remove any portions of buffered roads that intersected them to 133 
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further remove false positive areas. Polygons representing buffered roads were then used to 134 

extract high tide flooding estimates. The extracted high tide flooding estimates were then used to 135 

clip the buffered road network, so that the attributes associated with the buffered road polygons 136 

could be analyzed (i.e., road type). Areas of overlap among buffered roads where road area 137 

would be counted multiple times were extracted and dissolved to create polygons labeled simply 138 

“intersection”. These intersection areas were erased from the buffered road polygon dataset to 139 

remove the overlapping polygon areas, and then the intersection areas were merged with the 140 

edited buffered road polygon dataset. 141 

 This analysis resulted in areas where high tide flooding estimates intersect roads, 142 

assuming a 10m wide road. Based on the assumptions outlined above, these data represented 143 

areas where stormwater network inundation may occur, either from surcharge from the 144 

stormwater network due to tidal flooding or from tidal flooding overtopping stormwater network 145 

inlets. 146 

 147 

2.2 Site Description 148 

 We measured various stormwater network water levels and modeled inundation in 149 

Beaufort, a small town located in coastal North Carolina on a peninsula between the mouths of 150 

the Newport and North Rivers (Figure S1). The downtown area of Beaufort is located directly 151 

adjacent to Taylor’s Creek, a channel that receives either brackish flow from the Newport/North 152 

rivers or saline water from the Atlantic Ocean via Beaufort Inlet. Taylor’s Creek has a mean 153 

semi-diurnal tidal range of 3.11 ft (NOAA gage 8656483). The downtown area has moderate 154 

urban land use and uses conventional subsurface piping to convey stormwater from impervious 155 

surfaces directly to Taylor’s Creek. The town has no stormwater backflow measures, and often 156 
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documents “sunny day” high-tide flooding and compound flooding during storm events (Sweet 157 

et al., 2020). A recent survey of the stormwater network by a civil engineering firm produced 158 

measurements for most of the downtown area (shown in bold in Figure S1). 159 

 Stormwater network inundation was also modeled in Wilmington, New Bern, and Nags 160 

Head, North Carolina. Each dataset had sporadic missing values for pipe or structure elevations, 161 

but New Bern had a large section of upland new development that was excluded due to missing 162 

survey elevations. All three cities (and Beaufort) have some distinctly different characteristics, 163 

but they all have all have flooding issues and large areas of development that rely on subsurface 164 

stormwater conveyance directly to a receiving waterbody. Wilmington is both the largest city 165 

and the city with highest elevation and relief. Wilmington’s downtown area is directly adjacent 166 

to the Cape Fear River and has a mean semi-diurnal tidal range of 4.28 ft above the river stage 167 

(NOAA gage 8658120), but it also has extensive suburban land use on the southern and eastern 168 

sides of the city that are affected by mean 3.98 ft semi-diurnal tides from the Atlantic Ocean 169 

(NOAA gage 8658163). New Bern is further inland and lies on the western side of the Neuse 170 

River. The Neuse River near New Bern can experience large amounts of riverine or storm surge 171 

flooding during hurricanes due to its eastward-facing orientation, and this occurred recently in 172 

2018 during Hurricane Florence that led to damages costing hundreds of millions of dollars. 173 

Nags Head is located on the Outer Banks, east of Manteo and Roanoke Island. On its western 174 

side, Nags Head is affected by wind-driven tides within the Pamlico sound, while its eastern side 175 

is affected by mean 3.22 ft semi-diurnal tides (nearby NOAA gage 8651370) from the Atlantic 176 

Ocean. 177 

 178 
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2.3 Water level 179 

 Two stormwater outfalls in Beaufort were selected for water level monitoring (Figure S1, 180 

OS-outfall and MP-outfall), and water level within the pipes was measured every 30 minutes 181 

from June 2017 to February 2018 (8 months) using a Teledyne Isco low-velocity flow sensor 182 

(pressure transducer for level) . In late November (for 3 months), we began measuring water 183 

level in a storm drain upstream from the MP site (Figure S1, MP-upstream).  184 

 A NOAA water level gauge located in Beaufort on Taylor’s Creek, and data were 185 

downloaded from this station to compare to our measured water levels. Using NOAA water level 186 

data and the surveyed invert elevations of our monitored sites (NAVD88), the water level in each 187 

monitored site was estimated every 30 minutes, coincident with the measured water levels within 188 

the pipes. Pipe diameter measurements for the two monitored outfalls and one storm drain were 189 

used to calculate the percent cross-sectional area inundated at the pipe ends for each time step of 190 

measured water level. 191 

 192 

2.4 Inundation Modeling 193 

  Stormwater network GIS data were obtained from each individual municipality by 194 

request. In total, we contacted 14 municipalities in coastal North Carolina and received data from 195 

8 municipalities. After data QC, we determined that only 5 municipalities had adequate data for 196 

the purpose of inundation modeling, and the main selection criteria were data coverage of the 197 

majority of the city and elevation or depth data for stormwater inverts. We chose four 198 

municipalities with good quality data: Beaufort, Wilmington, Nags Head, and New Bern. 199 

 We then created an R package, bathtub (https://acgold.github.io/bathtub/), that 200 

implements a 2D static inundation model coupled with a 1D pipe network model to estimate 201 

https://acgold.github.io/bathtub/
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stormwater network inundation at discrete water levels. The R package uses GIS data 202 

representing the stormwater network features (e.g., pipes, drop inlets, junction boxes, etc.), and 203 

creates a model object consisting of 3 simple feature objects (sf R package, Pebesma, 2018): 204 

‘pipes’, ‘nodes’ (pipe ends), and ‘structures’ (e.g., drop inlet, junction box, etc.). Network 205 

connectivity derived from the spatial topology is stored in the ‘nodes’ layer. In the case of the 206 

occasional missing invert elevation at a node, the value is conservatively interpolated from 207 

nearby nodes by dropping the invert elevation a minimal amount (0.1 feet) from the nearest up-208 

network value. 209 

 For the 2D inundation model, we used methods and source data used by NOAA to model 210 

overland inundation (SLR viewer: https://coast.noaa.gov/slr/). We utilized 1/9th arcsecond (~ 3 211 

m) NOAA SLR DEMs (https://coast.noaa.gov/slrdata/) and converted the vertical datum of the 212 

elevation values from NAVD88 to the local mean higher high water (MHHW) datum using a 213 

conversion raster created with the NOAA VDATUM application 214 

(https://coast.noaa.gov/htdata/Inundation/TidalSurfaces). For Nags Head only, the conversion 215 

factor between NAVD88 and MHHW was propagated up the stormwater network because there 216 

were large differences in conversion factors between the western side (Pamlico Sound) and 217 

eastern side (Atlantic Ocean) of the barrier island. For each distinct water level modeled, areas 218 

lower than that elevation were selected, and clumps of cells smaller than a specified area were 219 

removed. This filtering of small clumps of cells ensured that modeled inundation only 220 

represented areas connected to the receiving water body. 221 

 This estimate of overland flooding was used as a starting point for the 1D pipe model, 222 

with all nodes (pipe ends) that intersected the overland flooding extent selected and marked as 223 

“impacted” at that water level. The specified water level was propagated up-network by 224 

https://coast.noaa.gov/slr/
https://coast.noaa.gov/slrdata/
https://coast.noaa.gov/htdata/Inundation/TidalSurfaces
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evaluating every node connected to the initially-selected nodes by a pipe and selecting nodes 225 

with invert elevations below the specified water level. This propagation continued until no 226 

additional nodes were selected for the specified water level. All selected nodes and both pipes 227 

and structures connected to them were marked as “impacted”, and using the diameter of each 228 

pipe end and the depth of each structure, the percent inundation of each object was calculated. 229 

Overland ponding was estimated using the original MHHW DEM by selecting all cells under the 230 

specified elevation and selecting only clumps of cells not connected to downstream waters but 231 

intersected structures that were estimated to be surcharging (water elevation > surface structure 232 

elevation).  233 

 Error estimates for model results were calculated using the z-score mapping method 234 

(Schmid et al., 2014), which produces a p-value that indicates the likelihood of inundation at a 235 

particular water level for each DEM pixel or stormwater network component. For the 2D model, 236 

error estimates incorporated the root mean squared error (RMSE) of the source DEM and the 237 

error associated with converting elevations from NAVD88 to MHHW. For this study, RMSE of 238 

the source NOAA DEM was 20 cm while estimated error (as standard deviation) of the 239 

conversion factor was 10 cm. In computing z-scores for stormwater network components, the 240 

measurement error of network invert elevations (estimated at 10 cm) was added to the error 241 

components from the 2D model if invert elevations were derived from depth measurements. If 242 

invert elevations were directly measured, the only additional error included was error from the 243 

conversion between NAVD88 and MHHW. P-values derived from z-scores allowed for 244 

predicted impacted infrastructure to be classified as “high confidence” (80% confidence, p < 0.2) 245 

or “low confidence” (20% confidence, p < 0.8). 246 
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 Using the bathtub R package, we modeled inundation in all four study cities between the 247 

water levels of -3 ft and 4 ft MHHW by 0.25 ft increments. To estimate flooding caused by 248 

stormwater network surcharge, the number of inlet structures impacted at each water level 249 

estimated by the 2D-1D model were compared to the number of inlet structures impacted by only 250 

the 2D component of the model that represents overland flooding with no subsurface modeling. 251 

 252 

3 Results 253 

3.1. High tide flooding on roads along the US east coast 254 

 High tide flooding on roads was estimated to occur to some extent in 656 incorporated 255 

municipalities along the US east coast, indicating that inundation of stormwater infrastructure 256 

may occur in many of these municipalities during high tide unless backflow measures exist 257 

(Figure 1). The metro areas of Miami, FL, New York City, NY, and Boston, MA had the largest 258 

estimated extent of high tide flooding on roads, partially because of the overall large amount of 259 

roads (Figure 1a,b, Figure 2). The majority of estimated impacted roads are classified as service 260 

(e.g., parking lots, alleys, etc.) or residential roads, but larger and higher-traffic roads (tertiary – 261 

trunk) were also estimated to be impacted in larger metro areas (Figure 1b,c).  262 

 263 
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 264 

Figure 1. Area of high tide flooding on city roads. a) Density map of areas where high tide 265 
flooding overlaps roads in incorporated areas, b) road area overlapping estimated high tide 266 
flooding extent binned by 0.5 degrees of latitude, and c) proportion of impacted road area 267 
separated by road type. 268 
 269 

 Using estimates of total road area for each incorporated municipality, we found that the 270 

median percent of total road area impacted by HTF decreased as total road area increased (ρ = -271 

0.25, p < 0.001, Figure 2), and the relative impact of HTF on roads varied greatly between 272 

municipalities, ranging from just over 0 to 94.5% of total road area impacted by HTF. While a 273 

majority of municipalities along the US east coast that currently experience HTF on roads had 274 

relatively small amounts of total road area impacted by HTF (median = 0.28%, Figure 2), 275 

approximately 1/3rd of the municipalities had greater than 1% of total road area impacted by HTF 276 

and approximately 13% of the municipalities had greater than 5% of total road area impacted 277 

HTF (Figure 2). Of the four municipalities measured or modeled in this study, Beaufort had the 278 
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highest percent of total road area impacted by HTF (1.17%), followed by Nags Head (1.04%), 279 

Wilmington (0.23%), and New Bern (0.19%). 280 

 281 

 282 

Figure 2. High tide flooding on city roads compared to total road area. a) Road area affected by 283 
high tide flooding (HTF) versus total road area for municipalities along the US east coast that 284 
experience some degree of HTF. Dotted lines and color indicate the estimated percent of road 285 
area subject to HTF in each municipality. Selected municipalities labeled, including the four 286 
study municipalities. b) Histogram of percent of total road area impacted by HTF. c) Percent of 287 
total road area impacted versus total road area with smooth quantiles (red). 288 
 289 

3.2 Measured water levels 290 

 In Beaufort, NC, the two monitored stormwater outfalls experienced some degree of tidal 291 

inundation every tidal cycle throughout the 8-month monitoring period. (data shown for 292 

December 2017 in Figure 3). The upstream monitored storm drain (MP-upstream) was located 293 

more than 200 meters up-network from the corresponding outfall (MP-outfall), but MP-upstream 294 

also experienced significant tidal inundation during more extreme high-tide events (Figure 3). 295 

Water level in each monitored outfall was predicted based on NOAA water level from a nearby 296 
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gauge and the invert elevation of the infrastructure. Predicted water level measurements 297 

corresponded well with observed water levels (r2 = 0.72 – 0.95), as did cumulative distribution 298 

functions of predicted and observed pipe inundation percent (Figure S2). The predicted water 299 

levels for the MP-upstream site were slightly higher than the measured water levels, and the 300 

predicted cumulative distribution of inundation percent over-predicted the occurrence of small 301 

amounts of inundation in the storm drain (Figure S2). 302 

 303 

 304 

Figure 3. Snapshot of measured water levels in pipes. Example of water level measured in 305 
selected pipes (color lines) and a NOAA tide gage in Beaufort, NC (grey line) in December 306 
2017. Shaded areas represent the dimensions of the pipe, showing that the monitored pipes were 307 
frequently filled with water from the receiving water body. Water level from OS – outfall (panel 308 
a) is missing on the graph prior to Dec 11 due to equipment malfunction. 309 
 310 
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3.3. Inundation modeling 311 

 Modeling the impacts of a range of water levels on stormwater infrastructure inundation 312 

for the Town of Beaufort showed that the stormwater network likely has extensive inundation at 313 

typical water levels (mean sea level = -1.83 MHHW, mean high water = -0.29 ft MHHW)(Figure 314 

4). At lower water levels, the inundation estimates are completely subsurface (Figure 4, Figure 315 

5a), but beginning around 1.5 – 2 ft MHHW (near NOAA HTF threshold), portions of the 316 

stormwater network reach full capacity and result in surcharging and ponding on roadways 317 

(Figure 4, Figure 5c). Model simulations that do not incorporate conveyance via the stormwater 318 

network show overland flooding due to shoreline overtopping at 2.25 ft MHHW (Figure 5b), and 319 

the estimated number of stormwater inlets impacted by solely overland flooding (“no pipes” line 320 

in Figure 4) is consistently smaller than the estimated number of inlets that are at full capacity 321 

(Figure 4).  322 

 323 

 324 

Figure 4. Model results for Beaufort, NC. Estimated impact of water level on stormwater inlets 325 
in Beaufort, NC across a range of water levels modeled with (stacked bars) and without (black 326 
dots/line) incorporating the stormwater network.  NOAA HTF threshold for Beaufort is shown as 327 
black vertical bar (1.77 ft). Yellow bars (“100+” volume filled) indicate full/surcharging inlets. 328 
 329 
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 330 

Figure 5. Spatial model results from Beaufort, NC. a) Water level of first impact (any degree of 331 
inundation) for pipe ends, b) overland flooding ignoring the stormwater network connected to 332 
Taylor’s Creek for each water level, and c) extent of ponding at each water level due to 333 
surcharge from stormwater network (red border) and overland flooding (transparent). 334 
 335 

 Inundation modeling in Wilmington, New Bern, and Nags Head showed that stormwater 336 

network inundation likely also occurs often in these cities at typical water levels, but the percent 337 
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of infrastructure impacted is lower than in Beaufort (Figure 6 – note the different vertical scales 338 

for each municipality). As in Beaufort, all of the study cities had extensive estimated subsurface 339 

inundation at typical water levels, and most estimated inundation did not result in overland 340 

flooding (Figure 6). Comparing model simulations that incorporate the stormwater network with 341 

model simulations that do not showed that estimates of stormwater inlet surcharge in 342 

Wilmington and New Bern aligned well. Similar to Beaufort, though, the estimated number of 343 

surcharging/full structures in Nags Head as estimated by model simulations that incorporate the 344 

stormwater network was much higher than predicted by flooding estimates that do not 345 

incorporate the stormwater network (Figure 6). 346 

 347 
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 348 

Figure 6. Model results from Wilmington, Nags Head, and New Bern, NC. Estimated impact of 349 
water level on stormwater inlets across a range of water levels in a) Wilmington, b) Nags Head, 350 
and c) New Bern, NC. Impacts were modeled with (stacked bars) and without (black dots/line) 351 
incorporating the stormwater network. NOAA HTF threshold (1.84 ft – Wilmington) and 352 
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approximate HTF threshold (1.7 ft – Nags Head and New Bern) shown as black vertical bar. 353 
Yellow bars (“100+” volume filled) indicate full/surcharging inlets. 354 
 355 

4 Discussion  356 

 Inundation of stormwater infrastructure can have a large local impact on the frequency 357 

and magnitude of urban flooding, but this phenomenon remains difficult to characterize. Using 358 

national high tide flooding and road data, this study demonstrated that tidal inundation on coastal 359 

roads, and thus stormwater infrastructure, occurs in municipalities along the east coast of the US. 360 

Measuring stormwater infrastructure inundation at a local scale in Beaufort, NC, gauged 361 

stormwater outfalls were inundated by the tide daily while the monitored upstream storm drain 362 

was inundated during extreme high tides. Predictions of pipe water level based on local NOAA 363 

water level data and pipe elevations showed that predicted outfall water levels corresponded well 364 

with measured water levels, but predicted water levels for the upstream storm drain were slightly 365 

higher than measured water levels, highlighting an acknowledged weakness of static inundation 366 

models. Using a 2D static inundation model coupled with a 1D stormwater network model (see 367 

Methods), we found that all four study municipalities likely experience frequent inundation of 368 

underground stormwater infrastructure that impairs their ability to convey stormwater. 369 

Inundation of the underground stormwater network occurred at water levels far below local 370 

NOAA “minor flooding” thresholds (~ 1.75 ft above MHHW), suggesting that current and future 371 

estimates of high tide flooding extent and frequency may drastically underestimate urban flood 372 

risk due to reduced stormwater capacity. While stormwater networks aim to drain stormwater 373 

runoff, model results from Beaufort and Nags Head showed that the stormwater network can act 374 

as a conduit for elevated downstream waters to flood low-lying inland areas that would otherwise 375 

be disconnected from receiving waters. Overall, this study shows that stormwater network 376 
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inundation in coastal US municipalities is common and can increase the risk of overland 377 

flooding.  378 

 379 

4.1. Impacts of network inundation 380 

 The measured and estimated stormwater network inundation in this study demonstrate the 381 

frequency of stormwater network inundation and the associated decrease in network drainage 382 

during wet weather along the east coast of the US. It is well-known that elevated water levels are 383 

a major driver of coastal urban flooding during extreme storm events such as hurricanes (Shen et 384 

al., 2019), but this study further shows that stormwater networks may often have reduced 385 

capacity to convey runoff during typical weather conditions and water levels far below local 386 

NOAA “minor flooding” thresholds frequently used to characterize high tide flooding (e.g., 387 

Sweet et al., 2018). Storm surge is not required to impair stormwater network drainage; typical 388 

high tides can affect network drainage during wet weather even absent overland flooding due to 389 

tides. Although Beaufort had the largest estimated impact at typical water levels (< 1 ft MHHW), 390 

it is important to note that it was the smallest of the four study municipalities with most of the 391 

surveyed infrastructure in the downtown portion of the municipality along a developed 392 

waterfront. A low percent of impacted stormwater inlets in another municipality could still mean 393 

a large impact in specific lower-lying spots within the municipality, especially if the municipality 394 

also encompasses inland area with higher elevations (e.g., Wilmington).  395 

 Inundation estimates of infrastructure in the study cities, especially Beaufort and Nags 396 

Head, also suggest that the stormwater network may act as conduit for receiving waters to flood 397 

low-lying areas at high water levels. Both of these municipalities had approximately 1% of their 398 

total road area impacted by HTF, suggesting that this specific issue may be widespread given 399 

that 1/3rd of the incorporated municipalities along the US east coast that experience HTF on 400 
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roads had similar or greater levels of HTF impact on total road area. This overland flooding that 401 

is counterintuitively exacerbated by stormwater networks could have negative impacts during 402 

both dry and wet weather. During dry weather, this overland “nuisance” flooding could have 403 

negative economic impacts for local businesses by limiting access (Hino et al., 2019). During 404 

wet weather, this overland flooding would effectively reduce the ability of the surrounding area 405 

to drain, depending on the amount of precipitation. An example of this high-tide flooding via the 406 

stormwater network is evident in Beaufort, where a section of road adjacent to Taylor’s Creek 407 

(Front St.) is predicted to flood at 1-2 ft MHHW (Figure 5b). These model results align with high 408 

tide flood reports at this location (Figure S3) and NOAA estimates of high tide flooding during 409 

dry weather (https://bit.ly/30MWUGi).  410 

 During dry weather, the inundation of subsurface pipes with brackish or saltwater at 411 

typical tidal water levels can degrade them (Bjerklie et al., 2012) and promote saltwater intrusion 412 

and the transmission of fecal bacteria from nearby sewer lines (Su et al., 2020). We did not 413 

directly measure or model either of these effects, but during water level data collection in 414 

Beaufort, we did find qualitative evidence of network degradation in the form of oysters and 415 

barnacles growing within the stormwater network or cracked pipes (Figures S4-S6). The issue of 416 

stormwater and sanitary sewer degradation from inundation likely exists in Beaufort, as a 417 

previous study in the area measured high levels of human-sourced fecal indicator bacteria in 418 

piped stormwater runoff (Parker et al., 2010).  419 

 420 

4.2 Issues characterizing network inundation 421 

 While inundation of stormwater networks appears widespread and common in our study 422 

area, directly characterizing the scale of the issue of stormwater network inundation remains a 423 

challenge due to issues of data quality and availability.  424 

https://bit.ly/30MWUGi
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 Good quality stormwater network data is key to assessing the impacts of inundation on 425 

the stormwater network, but inadequate funding likely hinders the collection of stormwater 426 

infrastructure survey measurements. For example, in NC, many municipalities raise the majority 427 

of funding for stormwater management directly through local stormwater fees (Riggs & Kirk, 428 

2019). While stormwater fees are a common means of raising funding for stormwater projects, 429 

they often do not generate enough funding for necessary stormwater infrastructure projects 430 

(Riggs & Kirk, 2019; Zhao et al., 2019). Approximately 18% of stormwater fees tracked over the 431 

past decade in NC have not been increased during that time period, and 36% of the fees that have 432 

been increased did not keep pace with inflation despite rising budget needs (Riggs & Kirk, 433 

2019). Also, municipality size and property values likely both contribute to higher stormwater 434 

fees (Kea et al., 2016), thus allowing more populous cities or areas with higher property values 435 

to collect more money for stormwater projects than smaller towns with lower property values, 436 

despite the fact that smaller towns are more likely to have a higher degree of road impacts from 437 

HTF (Figure 2c). 438 

 If municipalities do, in fact, have adequate stormwater network data to assess the possible 439 

impacts of inundation, there are currently no centralized state or federal databases to house the 440 

data. A public database of stormwater network data would have a positive impact on planning 441 

efforts to increase resilience to extreme storm events and sea level rise by allowing comparisons 442 

of network inundation between municipalities and additional modeling of flood risks. 443 

Comparisons of network inundation risk could help determine which municipalities are most at 444 

risk and in need of additional funding for updates. Broad access to stormwater network datasets 445 

would also allow more researchers access to undertake more sophisticated modelling of real-446 

world flooding conditions during storm events (e.g., Shen et al., 2019). Stormwater networks are 447 
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heterogeneous due to differences in development or landscape properties, so infrastructure data 448 

from more municipalities could improve the accuracy of large-scale estimates that rely on 449 

assumptions of stormwater network characteristics. For the current study, we assume that HTF 450 

on municipal roads is an indicator of stormwater network inundation that drains the surrounding 451 

area, and additional infrastructure data from more municipalities would allow this assumption to 452 

be tested more broadly. 453 

 454 

4.3 Addressing network inundation in the short- and long-term 455 

 The threat of coastal flooding is increasing due to rising seas and the effects of climate 456 

change on precipitation patterns (Kulp & Strauss, 2019; Nicholls et al., 1999; Sweet et al., 2020, 457 

2018; Wahl et al., 2015; Woodruff et al., 2013), and many low-lying coastal areas will need to 458 

adapt quickly to both increased stormwater network inundation and excessive stormwater runoff.  459 

 For stormwater network inundation in the short term, the most direct engineering solution 460 

is to install tide gates that prevent flow up-network when receiving water levels are elevated. 461 

These tide gates reduce tidal inundation (Sadler et al., 2020; Shen et al., 2019), and there are 462 

even efforts to make these tide gates responsive to current and predicted inundation to increase 463 

their efficacy (Sadler et al., 2020). Though this retrofit to the current stormwater network may be 464 

effective in the short- to medium-term, predicted increases in sea level and groundwater will 465 

inevitably lead to continuously inundated outfalls in vulnerable locations and decreased surface 466 

storage of stormwater further inland (Davtalab et al., 2020; Rotzoll & Fletcher, 2013).  467 

 Addressing the long-term issue of coastal urban flooding, which includes both 468 

stormwater network inundation and excess stormwater runoff volumes, will require substantial 469 

investment in planning and upgrading drainage systems (Robert L Wilby & Keenan, 2012). A 470 

discussion of this broader adaptation and planning effort is outside the scope of the current study, 471 
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but these strategies broadly include updating infrastructure to address network inundation (e.g., 472 

backflow prevention, pumping), decentralized or low impact development to manage stormwater 473 

(e.g., stormwater harvesting), landscape-scale planning to incorporate surface storage of flood 474 

waters, and possibly managed retreat or buyouts of vulnerable areas (Rogers et al., 2020; 475 

Rosenzweig et al., 2018; Robert L Wilby & Keenan, 2012).  476 

 Future investigation is needed to further characterize the extent of coastal stormwater 477 

network inundation to inform planning efforts, and the simple modeling framework presented 478 

here can be used as an initial step for both municipalities and researchers. 479 

 480 
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